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looked: the scalability of the algorithm
itself.  Here, scalability is a description
of how the total computational work
requirements grow with problem size,
which can be discussed independent of
the computing platform.

Many of the algorithms used in
today’s simulation codes are based on
yesterday’s unscalable technology.  This
means that the work required to solve
increasingly larger problems grows
much faster than linearly (the optimal
rate).  The use of scalable algorithms
can decrease simulation times by sev-
eral orders of magnitude, thus reducing
a two-day run on an MPP to 30 minutes
(Figure 1).  Furthermore, the codes that
use this technology are limited only by
the size of the machine’s memory,
because they are able to effectively
exploit additional computer resources
to solve huge problems. 

Scalable algorithms enable the appli-
cation scientist to both pose and
answer new questions.  For example, if
a given simulation (with a particular
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fundamental scientific issues.  Finally,
in the area of nuclear weapons stock-
pile stewardship, full-blown
experiments are prohibited by the
Comprehensive Test Ban Treaty, and
detailed numerical simulations are
needed to fill the resulting void.
Within the DOE and elsewhere, codes
are being developed to solve highly
resolved three-dimensional problems
that require the computational speed
and large memory of the massively par-
allel computers.

Although parallel processing is nec-
essary for the numerical solution of
these problems, alone it is not suffi-
cient. The project also requires scalable
numerical algorithms.  By “scalable”
we generally mean the ability to use
additional computational resources
effectively to solve increasingly larger
problems.  Many factors contribute to
scalability, including the architecture of
the parallel computer and the parallel
implementation of the algorithm. One
important issue, however, is often over-

Scalable
Linear
Solvers
The scalable linear solvers project is
developing scalable algorithms and
software for the solution of large,
sparse linear systems of equations on
massively parallel computers having
upwards of 10,000 processors.

We wish to significantly speed up the
solution of the linear systems that arise
in many large-scale scientific simula-
tion codes.  Applications of interest
include radiation diffusion and trans-
port, structural dynamics, flow in
porous media, and magnetic fusion
energy.  The linear systems result from
discretizations of partial differential
equations on structured, block-struc-
tured, and unstructured meshes.

This work is supported by the ASCI
(Advanced Simulation Computing
Program) and the SciDAC (Scientific
Discovery through Advanced
Computing) program.  These programs
focus on developing scalable algo-
rithms and software for solving large,
sparse linear systems of equations on
parallel computers. The problems of
interest arise in the simulations codes
being developed to study physical phe-
nomena in the defense, environmental,
energy, and biological sciences.

The Need for Scalable
Algorithms

CC
omputer simulations play an
increasingly important role in
scientific investigations, sup-

plementing (and in some cases,
supplanting) traditional experiments.
In engineering applications, such as
automotive crash studies, numerical
simulation is much cheaper than exper-
imentation.  In other applications, such
as global climate change, experiments
are impractical (or unwise), and simu-
lations are used to explore the
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Figure 1. Scalable linear solvers (such as multigrid) enable terascale simulation by keeping
solution time constant as the problem size increases with the number of processors. J2CG,
ICCG, and MGCG are conjugate gradient algorithms with Jacobi, incomplete Cholesky, and
multigrid preconditioners, respectively.
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resolution) takes several days to run,
and a refined (i.e., more accurate)
model would take much longer, the
application scientist may forego the
larger, higher fidelity simulation.  He or
she also may be forced to narrow the
scope of a parameter study because
each run takes too long.  By decreasing
the execution time, a scalable algorithm
allows the scientist to do more simula-
tions at higher resolutions.

Linear Solver Research
Directions

In many large-scale scientific simula-
tion codes, the majority of the run time
is spent in a linear solver.  For this rea-
son, much of the scalable algorithms
research and development is aimed at
solving these large, sparse linear sys-
tems of equations on parallel
computers.  The scalable linear solver
algorithms we develop are imple-
mented and available as part of the
hypre library. 

Multigrid is an example of scalable
linear solver technology.  It uses a relax-
ation method like Gauss–Seidel to
efficiently damp high-frequency error,

leaving only low-frequency, or smooth,
error.  The multigrid idea is to recognize
that this low-frequency error can be
accurately and efficiently solved for on
a coarser (i.e., smaller) grid.  Recursive
application of this idea to each consec-
utive system of coarse-grid equations
leads to a multigrid V-cycle (Figure 2).
If the components of the V-cycle are
defined properly, the result is a method
that uniformly damps all error frequen-
cies with a computational cost that
depends only linearly on the problem
size.  In other words, multigrid algo-
rithms are scalable. 

For linear systems defined on struc-
tured meshes (e.g., logically rectangular
meshes) and semi-structured meshes
(e.g., locally refined meshes), we are
developing geometric multigrid meth-
ods.  An algorithm of this type was used
in a three-dimensional parallel ground-
water simulation (using eight million
spatial zones) to speed up the linear
solves by a factor of 120 with nearly
90% scaled efficiency on 256 proces-
sors of the Cray T3D.  We have
developed two geometric multigrid
algorithms (SMG and PFMG), which

are available in the hypre library.
Parallel structured multigrid codes are
now being run on ASCI platforms and
used in ASCI codes. For example, the
solution of a one-billion-unknown sys-
tem took less than 90 seconds using
3,150 processors.  

For linear systems defined on
unstructured meshes, it is difficult to
use geometric information in a way
that is simple, straightforward, and
portable from application to applica-
tion.  For this reason, we are
developing new algebraic multigrid
methods. This type of method has been
used successfully to solve problems in
a large number of application areas,
but there are still important problems
that cannot be solved effectively using
current techniques.  Our research
focuses on efficient algebraic multigrid
solvers for finite element applications,
and effective parallelization strategies
for large-scale algebraic multigrid
methods. The algebraic multigrid code,
Boomer AMG, available in the hypre
library, has successfully solved linear
systems using over a thousand proces-
sors of ASCI Blue at LLNL.

To enhance robustness, we often
use multigrid as a preconditioner for
Krylov methods such as conjugate
gradients.  In general, precondition-
ers can be designed to have a
multilevel structure and give scal-
able performance like multigrid. Our
research includes the development
of multilevel versions of approxi-
mate inverse and incomplete
factorization (ILU) techniques. These
techniques are algebraic in nature
and work on unstructured meshes.
Results show that they scale almost
as well as multigrid methods and are
often more robust across a broader
class of problems. 

For more information about Scalable
Linear Solvers, contact  Robert
Falgout, (925) 422-4377,
rfalgout@llnl.gov; or Jim E. Jones,
(925) 423-5194, jjones@llnl.gov.
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Figure 2. The down-cycle of a multigrid V-cycle uses smoothers to damp oscillatory error com-
ponents at different grid scales. The up-cycle corrects the smooth error components remaining
on each grid level by using the error approximations on coarser (i.e., smaller) grids.

A Multigrid V-cycle
Multigrid uses coarse grids to 
efficiently damp smooth error 
components.


